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Abstract - Epilepsy is a chronic neurological disease caused 

by sudden abnormal brain discharges, leading to temporary 

brain dysfunction. It can manifest in various ways, 

including paroxysmal movement, sensory, autonomic 

nerve, awareness, and mental abnormalities. It is now the 

second largest neurological disorder worldwide, affecting 

around 70 million people and increasing by approximately 

2 million new cases each year. While about 70% of epilepsy 

patients can control their seizures with regular antiepileptic 

drugs, surgery, or nerve stimulation treatments, the 

remaining 30% suffer from intractable epilepsy without 

effective treatment, causing significant burden and 

potential danger to their lives. Early prediction and 

treatment are crucial to prevent harm to patients. 

Electroencephalogram (EEG) is a valuable tool for 

diagnosing epilepsy as it records the brain's electrical 

activity. EEG can be divided into scalp and intracranial 

types, and doctors typically analyze EEG signals of epileptic 

patients into four periods. 
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I. INTRODUCTION (SIZE 10 &BOLD) 

In epilepsy, seizures are defined as the time from the 

beginning to the end of abnormal brain activity, typically 

lasting for a few seconds to minutes. The preictal period 

refers to the time span from a few minutes to dozens of 

minutes before the seizure onset. Following a seizure, the 

postictal period is the time it takes for the patient to return to 

a normal state. In the interictal period, which occurs between 

the late onset of one seizure and the next pre-seizure phase, 

the patient's state is indistinguishable from normal. 

Identifying the preictal period accurately is crucial for 

predicting epilepsy and preventing seizures. The process of 

seizure prediction involves data collection, EEG signal 

preprocessing, feature extraction, classification, and 

evaluation of the results. Different characteristics of EEG 

signals during the preictal and interictal periods are utilized 

for seizure prediction. Seizure prediction research dates back 

to the early 1870s, with Viglione et al. [1] being among the 

first to use patient EEG data for epilepsy prediction. In the 

1980s, Rogowski et al. [2] and Salant et al. [3] introduced an 

autoregressive model to analyze parameter changes within 

six seconds before seizure onset, incorporating physical-

mathematical theories of nonlinear systems. Recent 

advancements in machine learning and deep learning have 

led to increased interest in seizure prediction. Mingkan Shen 

et al. [4] used an improved Lyapunov exponent algorithm to 

better capture subtle chaotic dynamics in epileptic signals 

using the fractional Fourier transform domain, achieving 

higher prediction accuracy than traditional methods. 

 

Raghu et al. [14] introduced the successive decomposition 

index (SDI) feature, which demonstrated a significant 

increase during seizures, enabling prediction based on 

changes in SDI before seizure onset. In their research, 

Bandarabadi et al. employed the feature selection of 

amplitude distribution histograms (ADHs) to predict 

epileptic seizures [5]. They calculated ADHs of epileptic 

EEG sample features, ranked each feature, and selected 

features with the largest ADHs difference. Wang and Lyu 

proposed a feature selection approach based on elimination 

and combined it with Support Vector Machines (SVM) to 

select the optimal feature set for seizure prediction. Yuan and 

Wei introduced a Bayesian linear discriminant analysis 

(BLDA) algorithm as a classifier to determine the sample 

features for seizure prediction. BLDA employs a 

regularization method to prevent overfitting issues, which is 

different from conventional Fisher's linear discriminant 

analysis. Jyotismita Chaki et al. [6] presented an end-to-end 

one-dimensional convolutional neural network (CNN) 

architecture to directly input epileptic EEG signals into the 

CNN model for seizure prediction. 

 

Zhang et al. [15] computed the Pearson correlation 

coefficient of the EEG signals to obtain the correlation 

matrix, which they used in a CNN model for seizure 

classification. Ozcan and Erturk introduced a 3D CNN model 

that utilizes temporal and spatial correlations of EEG signals 

for predicting epileptic seizures. Abdelhameed and Bayoumi 

used a deep convolutional auto-encoder to identify the best 

spatial features from EEG signals and a BiLSTM for 

temporal information classification in seizure prediction. 

Shahbazi and Aghajan [13] developed a CNN-LSTM model 

to extract temporal and spatial characteristics of multi-

channel EEG signals, aiming to predict epileptic seizures. 
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Daoud and Bayoumi [16] utilized convolutional neural 

networks to extract significant spatial features from different 

scalp locations and recurrent neural networks for seizure 

prediction. They also introduced a semi-supervised method 

based on transfer learning techniques to improve 

optimization problems in their approach [7][8]. In this study, 

the main objective is to develop an accurate seizure 

prediction model by automatically extracting features from 

epileptic EEG data using deep learning techniques. To 

leverage both the temporal and spatial characteristics of the 

EEG signals, the researchers propose a CBAM-3D CNN-

LSTM model for predicting seizures.  

 

The process involves several steps. First, the EEG signals are 

preprocessed using Short-Time Fourier Transform (STFT) to 

enhance their representation [9][10]. Then, a 3D CNN model 

is used to extract features from both the interictal stage (the 

period between seizures) and the preictal stage (shortly 

before seizure onset) from the preprocessed signals [11][12]. 

To classify the extracted features effectively, a Bidirectional 

Long Short-Term Memory (Bi-LSTM) network is integrated 

with the 3D CNN.  

 

To further improve the model's learning ability and 

robustness, the researchers introduce a Channel and Spatial 

Attention Module (CBAM) into the model. CBAM 

selectively focuses on important information from both the 

channel and spatial dimensions of the data, enabling accurate 

extraction of interictal and pre-ictal features. The proposed 

approach was evaluated on a public CHB-MIT scalp EEG 

dataset, achieving impressive results with 97.95% accuracy, 

98.40% sensitivity (true positive rate), and a false alarm rate 

of 0.017 h−1 on 11 patients. The structure of the article is 

divided into sections as follows, Section II: Describes the 

materials and methods used in the study, including details 

about the dataset, data preprocessing, the 3D CNN, Bi-

LSTM, CBAM, and training and testing procedures, Section 

III: Presents the experimental results and compares them 

with other existing models and Section IV: Discusses the 

findings from the experiments and the models used, 

providing insights and implications of the results. Overall, 

this study focuses on leveraging deep learning techniques 

and attention mechanisms to develop an accurate and robust 

seizure prediction model, and it provides comprehensive 

analyses of the proposed approach and experimental results. 

 

II. METHODOLOGY  

In epilepsy prediction, EEG signals exhibit both temporal 

and spatial correlations. While the 2D Convolutional 

Neural Network (CNN) model excels at extracting spatial 

features, it disregards the temporal information of EEG 

signals. On the other hand, the Long Short-Term Memory 

(LSTM) model is more suitable for handling timing 

information, but it does not fully leverage the spatial 

correlations [17]. As a result, neither model effectively 

captures the combined temporal and spatial characteristics 

of epileptic EEG signals. To address this limitation, the 

researchers propose a novel CBAM-3D CNN-BiLSTM 

seizure prediction model [18][19]. This model is inspired 

by successful applications of deep learning in video 

processing, human behavior recognition, and surface 

electromyography (sEMG) noise recognition. The process 

begins by collecting and preprocessing the dataset [20]. 

The preprocessed data is then extracted using a 3D CNN 

model, which allows for the incorporation of both 

temporal and spatial information. To enhance the learning 

capability and robustness of the model, a Channel and 

Spatial Attention Module (CBAM) is introduced. The 

CBAM module selectively attends to important 

information in both the channel and spatial dimensions of 

the data, ensuring that the model accurately captures the 

relevant features. Finally, a Bidirectional LSTM 

(BiLSTM) is utilized to classify the interictal and preictal 

stages of the EEG signals.  

 

 

II. DATASET  

In this study, we used CHB-MIT dataset, which is a widely 

used public dataset for seizure detection and prediction. The 

dataset was co-created and recorded by scientists from MIT 

and Boston Children's Hospital. It consists of EEG data from 

22 pediatric patients, totaling 23 incidents and 844 hours of 

continuous scalp EEG recordings [21][22]. The EEG data 

were collected from 22 electrodes using the international 10-

20 system at a sampling rate of 256 Hz with the bipolar 

montage technique. For seizure prediction, the researchers 

utilized specific time periods from the dataset. The pre-

seizure period was defined as continuous EEG signals from 

35 minutes to 5 minutes before a seizure, while the post-

seizure period was taken as the 10 minutes after the end of 

seizures. The interictal period, representing the non-seizure 

state, was defined as the time between 4 hours after the end 

of a seizure and 4 hours before the start of the next seizure. 

Additionally, for intervention purposes, the EEG signal 5 

minutes before a seizure was used as the intervention period 

and excluded from the data. To ensure sufficient data for 

model training and testing, the researchers-imposed 

constraints on the number of seizures per patient, choosing 

between 3 and 10 seizures. Therefore, 11 patients, with a 

total of 55 seizures and 235 hours of continuous EEG data, 

were selected from the CHB-MIT dataset for this study. 

These carefully selected samples were then used for the 

development and evaluation of the proposed CBAM-3D 

CNN-LSTM seizure prediction model.  
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II. PRE-PROCESSING  

 

We encountered a data imbalance problem, where the 

number of interictal data samples vastly exceeded the 

number of preictal data samples. To address this issue, they 

employed overlapping sampling techniques to generate more 

training datasets and balance the interictal and preictal 

datasets [23][24]. The overlapping sampling technique 

involved selecting 8-second-long overlapping activity 

windows from continuous scalp EEG signals. A sliding 

length of 4 seconds was used for the overlap, as illustrated in 

Figure 4. For the interictal period, N fragments (where N is 

the number of preictal datasets) were randomly selected 

from the interictal data to serve as the training set. Since the 

researchers needed to use a 3D CNN model to extract 

features from the dataset, they converted the EEG signals 

into spectrograms. To achieve this, they employed Fourier 

transform and wavelet transform methods, which are 

commonly used for converting EEG signals into 

spectrograms in epilepsy detection and prediction studies. 

The EEG signals captured by the CHB-MIT dataset were 

affected by 60 Hz power line noise. To remove this noise 

interference, the researchers utilized band-stop and high-pass 

filters to eliminate the frequency components within the 57-

63Hz and 117-123Hz ranges. Additionally, they removed 

the 0Hz DC component from the signals. The resulting 8-

second EEG signal spectrogram was then used for 

denoising, and Short Time Fourier Transform was applied to 

accomplish this task. This approach aimed to enhance the 

quality and reliability of the EEG signal data, which would 

subsequently be used for the training and evaluation of the 

proposed CBAM-3D CNN-LSTM seizure prediction model. 

 

BI-LSTM 

RNN is a type of neural network that is specifically 

designed to handle sequential data as input. It is based on 

the concept of recursion, where each recurrent unit in the 

network is connected in a chain, allowing it to process 

sequences of data by considering the previous elements in 

the sequence. RNNs are commonly used for time series 

data prediction tasks, natural language processing, and 

other sequential data analysis tasks. 

 

3D CNN 

A Convolutional Neural Network (CNN) is a type of 

feedforward neural network with a deep structure that 

incorporates convolution calculations. It is a fundamental 

and widely used deep learning method, finding applications 

in image classification, speech recognition, machine vision, 

and various other domains. The key strength of CNN lies in 

its ability to learn hierarchical representations, making it 

capable of translation-invariant classification, which has led 

to it being referred to as a "translation-invariant artificial 

neural network. The core component of CNN is the 

convolution operation. In this study, a CNN is utilized to 

process the input data, generating a feature vector. To 

further process the time series data and classify it, the 

researchers employ a Bidirectional Long Short-Term 

Memory (Bi-LSTM) classifier. The Bi-LSTM processes the 

time series in two opposing orientations and substitutes two 

blocks for each LSTM block. By integrating both CNN and 

Bi-LSTM, the study leverages the advantages of both 

approaches: the hierarchical feature learning capabilities of 

CNN and the ability of Bi-LSTM to effectively handle 

sequential data. The combination of these techniques is 

expected to improve the model's performance in predicting 

epileptic seizures. 

 

Model is input into the forward transfer block of Bi-LSTM 

from the beginning to the end of its first instance, and then the 

same fragment is processed in the opposite order. Each time 

step’s combined output from its two blocks is what is known 

as the network output for that step. Compared to LSTM, Bi-

LSTM can handle both previous and future contexts, thus 

enhancing prediction results. In the Bi-LSTM classification 

process, to prevent overfitting, we employ the Dropout   

regularization technique. Dropout is applied with a 50% 

factor to the input and loop states. As the cost function, the 

cross-entropy loss function is employed and Adma is 

selected as the optimizer for optimization. 

 

TRAINING & TESTING METHODS 

To ensure the model's performance reflects real-world 

scenarios and to address concerns related to overfitting and 

model robustness, the researchers employed the leave-one-

out cross-validation approach (LOOCV) for each patient. 

This approach involves selecting one seizure from a patient's 

total of N seizures as the test set, while the model is trained 

using the remaining N-1 seizures. This process is repeated N 

times, with each seizure serving as the test set once. In this 

study, to create balanced training and test sets, 25% of the 

data from both the pre-ictal and interictal samples were 

randomly chosen as the test set, while the remaining 75% 

were used for training. During the training process, the 

researchers aimed to achieve higher accuracy by increasing 

the number of iterations. However, this could lead to 

overfitting. To mitigate this issue, they implemented the 

early-stop method. This method involves stopping the 

training process immediately when either the validation set 

accuracy reaches 99% or when the validation set loss 

function starts to increase. This ensures that the model is 

trained sufficiently without overfitting to the training data. 

By using LOOCV and early-stop, the researchers aimed to 

rigorously evaluate the model's performance, validate its 

generalization capability, and ensure it can accurately 

predict epileptic seizures in real-world scenarios. 
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III. RESULTS 

 
To assess how well seizure prediction algorithm’s function, 
two important time parameters were defined during the 
study: seizure occurrence period (SOP) and seizure 
prediction hori- zon (SPH). SPH refers to the period 
between the time point when the predictive alarm is issued. 
In this study, we also used three parameters: accuracy, 
sensitivity and false prediction rate (FPR) as the evaluation 
indexes of epileptic seizure prediction model. Among them, 
sensitivity and FPR are two key evaluation indicators that 
researchers are most interested. Sensitivity is the prediction 
model’s capacity to recognize the pre-epileptic phase of the 
EEG with accuracy., and FPR is a measure of how many 
incorrect predictions the model makes each hour [6].  

 

Seizures occur within the SOP range, and the specific time 

point of the attack can be different. All other things are wrong. 

Therefore, to assess the effectiveness of seizure prediction 

models, different ranges of SPH and SOP need to be 

defined. For example, the smaller the SOP, the more 

accurate the prediction of the upcoming epileptic seizure 

time point. The ideal situation is that the SOP is reduced to 

a time point, which means that the epileptic seizure is 

accurately generated at this time point. However, it is 

particularly difficult to design such a prediction model. There 

is no perfect prediction model that can accurately predict a 

certain time point of epileptic seizures in patients. 

Therefore, SOP is not the smaller the better. As the SOP 

range decreases, the number of false predictions increases. 

In addition, the researchers believe that although the scope of 

the SPH definition of the larger the number of false 

positives, but the SPH range will increase the patient ’s 

anxiety, to bring a heavy psychological burden on patients 

[21]. Therefore, SOP was set at 30 minutes and SPH to 3 

minutes for this study. 

 

 

 

Among them, TP was true positive, FP was false positive, 

TN was true negative, and FN was false negative. Table 2 

shows the accuracy, sensitivity and FPR prediction results 

of our model for 11 patients. We can see that the average 

performance of the proposed model reaches 97.95 % 

accuracy, 98.40 % sensitivity and 0.017 h−1 FPR on the 

CHB-MIT dataset. Among all patients, Pt01 and Pt08 

achieved very good results, reaching more than 99 % 

accuracy, 100 % zero sensitivity and 0 false prediction 

rate, and achieved good results in other patients. Table 3 

shows the comparison results of 3DCNN model and time 

prediction model. We can see that the model combining 

3DCNN with BiLSTM has better accuracy, sensitivity and 

FPR than the model combining 3DCNN with BiGRU. 

Therefore, we use the 3DCNN-BiLSTM model to predict 

seizures. At the same time, we introduce CBAM into 

3DCNN-BiLSTM. It can be seen from Table 3 that the 

CBAM-3DCNN-BiLSTM model achieves better results 

than the other two models. The CHB-MIT dataset is used to 

assess all methodologies. The table shows that, in com- 

parison to other models, our model achieves high 

accuracy, high sensitivity, and a low false prediction rate. 

Therefore, our proposed CBAM-3DCNN-BiLSTM model 

is significantly superior to other CNN-based methods. 

 

CONCLUSION 

 

The study proposes a model called CBAM-3DCNN-

BiLSTM for predicting seizures. It uses EEG signals 

transformed into three-dimensional feature vectors using 

the STFT algorithm. The model employs 3DCNN to 

extract features from time, frequency, and channel data. 

CBAM is integrated to enhance the model's learning 

ability, filter important information, and avoid redundant 

features. BiLSTM is used for classifying the extracted 

features. The proposed method achieves high accuracy of 

97.95%, sensitivity of 98.40%, and a low false positive 

rate of 0.017 h^ (-1). Compared to previous approaches, 

the model demonstrates better performance in predicting 

epileptic seizures. However, to ensure wider applicability, 

the method needs to be tested on more subjects of 

different age groups, clinical conditions, and disease 

characteristics in future work. Additionally, continuous 

improvement of the prediction accuracy is essential to 

reduce risks for epilepsy patients and protect their life and 

health.  
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