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Abstract - To overcome the environmental impacts of a 

manufacturing factory over its life cycle, the role of 

sustainable energy effectiveness is vital. For this reason, 

implementing energy conservation technologies to empower 

energy efficiency has become an important business for the 

majority of manufacturing plants. Data-driven control setups 

seem to be a novel idea to handle the energy efficiency of such 

complex systems, while machine learning is becoming well-

known in the system engineering community. In this paper, a 

new approach together with optimal control application is 

considered to open promising energy-saving ideas through 

investigating machines of a factory using machine learning, 

specifically, Gaussian Processes Regression (GPR), where 

the model is built by correlating the dynamics, complexity, 

and interrelated energy consumption recordings. We connect 

the idea with controlling a manufacturing system energy in an 

optimized way, where the Model Predictive Control loop 

delivers optimal solutions for each control time step. In the 

end, a numerical example is demonstrated to give a clear 

picture of the proposed modelling method potentials. 

Keywords — Gaussian processes, Machine learning, 

Model predictive control, Sustainable manufacturing. 

 

I. INTRODUCTION  
Improvements in distributing total energy economically 

optimal are among the major prerequisites to fulfil the demand 

of industrial process facilities due to high and fluctuating 

prices in local and global energy markets. Even though many 

innovative approaches have been discovered and implemented 

consistently, the energy management requirements have not 

been fully utilized. Thus, manufacturing facility managers' 

society still lacks novel ideas to overcome concerns about 

energy efficiency [1]. Moreover, the role and contribution of 

continuous reductions in energy consumption over a 

manufacturing factory's life cycle to cut off GHG emission 

impact are crucial in jumping towards an eco-friendly 

environment. For these reasons, identifying energy-related 

problems have become a hot area of interest in recent years. 

Herrmann et al. [2]-[3] proposed his state of the art for 

optimized process chains and locations of technical building 

services. Devoldere et al. [4]-[5] researched energy-related 

impact and cost reduction proposals for machine design in the 

production line. The combinations of power metering with 

sensors to monitor energy management systems was another 

considerable work by authors of [6]-[9]. On the other hand, 

Abdufattokhov et al. [10] tested the performance of the data-

driven control idea and showed the proposed technique has a 

promising future. Our contribution in this work is to solve the 

aforementioned problem through discussions on how artificial 

intelligence technics can be applied to data collected from 

machines in order to achieve energy-efficient manufacturing 

management using Model Predictive Control (MPC). MPC 

has been applied to real systems and shown to be an efficient 

supervisory control solution providing 17 % energy savings 

with better thermal comfort over rule-based control [11] with 

the ability to estimate a plant's future response using a 

statistical model. 

  

The reminder of the paper content is organized as follows: 

In section II, primary energy consumers and producers in a 

manufacturing process is explained, followed by an approach 

on how data can be collected. Next, two sections III and IV are 

devoted to the methodology of the proposed approach. Finally, 

we end up with a demonstrative example and conclude sections 

V and VI, respectively. 

II. DATA ACQUISITION FROM MANUFACTURING 

PROCESS 

Total energy delivered to a manufacturing factory is wasted 

for production and auxiliary services. While the former can 

include machine tools, conveyors, robots, heaters, fridges, 

etc., the latter includes chillers, air compressors, boilers, 

lighting and etc. As shown in Figure 1, the chillers' workload 

is to negotiate with the heat produced by machines of the 

production system, taking into account constraint 

qualifications. In addition, there exist three primary energy 

emissive sources: heat transferred from ambient 

environment Qconduction, by radiation from sunshine Qradiation, 

and the last one, heat coming from doors or windows 

openings, Qinfiltration. 
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Fig. 1 Energy distribution among main consumers in a factory. 

 

From Figure 1, it is evident that the relationships are complex, 

non-linear, and dynamic. Although it may seem possible to 

model theoretically their dynamic correlations based on 

physical engineering theories with acceptable accuracy for a 

realistic understanding of their behaviours, in reality, 

controlling their performance for energy efficiency remains 

extremely difficult. One possible way to achieve the 

objectives without relying on theoretical models is to collect 

energy consumption and operation data and develop a model 

of the system using the data only. Since our focus is 

improving energy efficiency, the power consumption p is an 

objective parameter, and it is defined by several output 

measurements y, which can be formulated as a function of 

control inputs u. We can collect time-series data matrix Ma as 

follows 

          𝑀𝑎 = |𝑝𝑎  𝑦𝑎   𝑢𝑎| =  {

𝑝𝑎 = |𝑝𝑖
𝑎|  

𝑦𝑎 = |𝑦𝑖𝑗
𝑎 |  

𝑢𝑎 = |𝑢𝑖𝑘
𝑎 |  

                    (1)  

 
where i=1,2,3…n; j=1,2,3…m; k=1,2,3…q. 

a - machine type superscript;  

i - time interval, j - th output and k - th input parameter 

subscripts, respectively; 

n - is the total number of data gathered; 

m - is the total number of output parameters;  

q - is the total number of input parameters.   

 
For example, uik

a  stands for the value of input parameter k of 

machine a at time interval i. Similarly, time-series matrix for 

energy consumption and operation data of other systems can 

be obtained through either SCADA(supervisory control and 

data acquisation) software system or directly from relevant 

digital sensors. 

III. PREDICTIVE MODELLING USING GAUSSIAN 

PROCESSES 

In most deterministic machine learning algorithms, 

difficulties in the training process stem from a lack of 

inefficient data. When the model is chosen, examining 

directions anticipated from this model leave the training data. 

Although the forecasts of the capacity approximator are 

discretionary, they are guaranteed with "full certainty" [12]. 

To conquer the issue, building up a model dependent on an 

appropriate intelligent algorithm that fabricates the 

framework's model utilizing a stochastic capacity 

approximator that puts a back dispersion over the mapping 

capacity and communicates the degree of vulnerability about 

the model [11] another option and practical arrangement. 

Thus, we initially require a probabilistic model to 

communicate model vulnerability for gaining without any 

preparation. See Figure 2 for visualizing what is aimed to 

construct in the paper. Hence, for learning from scratch, we 

initially need a probabilistic model to express model 

uncertainty. For this purpose, we can use a non-parametric 

probabilistic Gaussian Processes Regression(GPR) to prepare 

a model. 

 

Fig. 2 '+' - training samples. Deterministic function 

approximators (left) and Probabilistic function approximator 

(right). 

 

 

A. Gaussian Processes Regression 
 

A Gaussian processes is a batch of random variables, which 

form Gaussian distribution jointly. We can include the 

Gaussian Processes(GP) models into a class of a 

nonparametric method of nonlinear system identification 

where new predictions of system behaviour are computed 

through the use of Bayesian inference techniques applied to 

empirical data [11]. GP models can be considered as a new 

approache such as Support Vector Machines [13]-[14]. In 

addition, GPs make possibile to include various kinds of prior 

knowledge into the model [15] for the incorporation of local 

models and the static characteristic.    

 

A GPs is completely specified by its mean function and 

covariance  function. It is very common to define mean 

function 𝑚𝑓(𝑥) and the covariance function 𝐶𝑓(𝑥𝑖 , 𝑥𝑗) of a 

dynamic process f(x) under consideration as 

 

    𝑚𝑓(𝑥𝑖) = 𝐸[𝑓(𝑥𝑖)]                                (2) 

𝐶𝑓(𝑥𝑖 , 𝑥𝑗) = 𝐸 [(𝑓(𝑥𝑖) − 𝑚𝑓(𝑥𝑖)) (𝑓(𝑥𝑗) − 𝑚𝑓(𝑥𝑗))]   (3) 

 

In order to develop a prognostic model using predefined data 

in Section II, we use GPs, please refer to [1] for more brief 

details.  

 

Consider the system 

𝑦 = 𝑓(𝑥) +  𝜖                                           (4)                                                                                                                          
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with the white Gaussian noise ϵ  ̴N(0, 𝜎𝑛
2), with the variance 

𝜎𝑛
2 and the vector of regressors x from the input dimension 

space 𝑅𝐷. We have [𝑦1… 𝑦𝑛]T  ̴  N(0,K) with 

 

𝐾 =  𝐾𝑓 + 𝜎𝑛
2𝐼                                         (5) 

 

where 𝐾𝑓 is the covariance matrix for the noise-free f of the 

system that is evaluated from the covariance function 

𝐶𝑓(𝑥𝑖 , 𝑥𝑗) applied to all the pairs i and j of measured data. 𝐼 is 

the n x n identity matrix. More information on a wide range of 

mean and covariance functions together with its use in GP 

models can be found in [16]. Here, we consider the composite 

covariance function made out of the squared exponential 

covariance function and the constant covariance function 

because of uncertainties caused by environment: 

 

𝐶(𝑥𝑖 , 𝑥𝑗) =  𝜎𝑓
2exp [−

1

2
 ∑ 𝜃𝑑(𝑥𝑖

𝑑 − 𝑥𝑖
𝑑)𝐷

𝑑=1 ] + 𝜎𝑛
2ꝺ𝑖𝑗       (6)                                    

 

 

B. Prediction with Gaussian Processes Regression 
 

In order to predict a new output estimate 𝑦∗ of the GP model 

for a given 𝑥∗, we use Bayesian framework [19]. The 

following step is to find how a new input is inserted to the 

covariance matrix 𝐾𝑛+1. For the batch of random variables 

[𝑦1… 𝑦𝑛,𝑦∗] we define: 

 

                                         𝑌𝑛+1  ̴   N(0, 𝐾𝑛+1)                               (7)                                                                           
 

with the covariance matrix 

 

                                         𝐾𝑛+1 = (
𝐾 𝐾∗
𝐾∗
𝑇 𝐾∗∗

)                         (8)                                                                         

 

where  

    𝐾∗ = [𝐶(𝑥1, 𝑥
∗), . . . , 𝐶(𝑥𝑛 , 𝑥

∗)] is the nx1 vector of 

covariances between the training and the test input data,  

    𝐾∗∗ = 𝐶(𝑥
∗, 𝑥∗) is the autocovariance submatrix of the test 

input data. 

 

Finally, we end up with the Gaussian prediction with the 

following mean and variance: 

 

  𝐸[𝑦∗] =  𝜇(𝑥∗) =  𝑚𝑓(𝑥
∗) + 𝐾∗

𝑇𝐾−1 (𝑌 − 𝑚𝑓(𝑋))      (9) 

 𝑣𝑎𝑟[𝑦∗] =  𝜎2(𝑥∗) =   𝐾∗∗ − 𝐾∗
𝑇𝐾−1𝐾∗                         (10)

                                                      

 

IV. GPR BASED MODEL PREDICTIVE CONTROL 

 

A. Introduction to MPC 
 

Model Predictive Control (MPC) is one member of the most 

popular and widely spreaded control algorithms that the future 

plant response is predicted using an explicit process model in 

industrial use. Thanks to a trustful and robust predicted system 

output and prediction control horizon, the MPC algorithm 

optimises the controllable variables to use an optimal future 

plant response for the next several steps. The prediction 

horizon range together with optimisation ability of MPC 

algorithms to handle with constraints that are often met in 

control practice have made it popular and widely used 

compared to other approaches in many applications [20]-[24]. 

 

The MPC working standard can be summed up as follows:  

 

1. Expectation of framework yield signal 𝑦(𝜏 + ℎ) is 

determined for each discrete example 𝜏 for future ℎ =
1,2… 𝑁ℎ. Estimations are meant as ȳ(𝜏 + ℎ|𝜏) and defines ℎ 

- step ahead estimation, while 𝑁ℎ is an upper bound of forecast 

horizon. Yield signal forecast is determined from our GP 

procedure model. Estimations are reliant on the control 

situation later on 𝑢(𝜏 + ℎ|𝜏); ℎ = 1,2… 𝑁ℎ − 1, which is 

applied from a second 𝜏 onwards.  

2. The vector of future control signals 𝑢(𝜏 + ℎ|𝜏); ℎ =
1,2… 𝑁ℎ − 1 is determined by minimization of estimation 

error ȳ(𝜏 + ℎ|𝜏).  

3. Just the principal component of the optimal control signal 

vector is applied. In the following emphasis, another 

deliberate yield test is recorded and the entire portrayed 

procedure above is circled inside the loop. 

 

B. Data-driven control  
Combining input-output model of dynamic system with our 

GP model, we write our dynamical system as follows 

 

        𝑝(𝜏) = 𝑓(𝑥(𝜏)) +  𝜖(𝜏)                                  (11)  
 

  𝑥(𝜏) = [𝑝(𝜏 − 𝑙1), … , 𝑝(𝜏 − 1), 𝑢(𝜏 − 𝑙2), … , 𝑢(𝜏),
𝑑(𝜏 − 𝑙3), … , 𝑑(𝜏)]      (12)               

 

with 𝑓 ̴ 𝐺𝑃(𝜇𝑓 , 𝜎𝑓
2), 𝜏 - the time step, 𝜖 - measurement noise, 

𝑝 - the (past) output, 𝑢 - the control input, 𝑑 - the exogenous 

disturbance input and 𝑙1, 𝑙2, 𝑙3 - the lags for autoregressive 

outputs, control inputs, and disturbances, respectively. 

C.  Optimization problem 
 

Now let's focus on our MPC optimization problem. 

Since, in our case the process model is GP, including 

uncertainity term makes possible to design a robust controller 

that will optimise action according to the validity of model. 

Overall, the optimization problem with quadratic cost is  
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 min     ∑ ‖𝑝̂𝑠(𝜏 + ℎ)‖𝑄
2 + 𝜎̂𝑠2(𝜏 + ℎ) + ‖𝑢𝑠(𝜏 + ℎ)‖𝑅

2𝑁ℎ
ℎ=0  

 

 s.t.  𝑝̂𝑠(𝜏 + ℎ) =  𝑚𝑓
𝑠(𝑥𝑠(𝜏 + ℎ)) + 𝐾∗

𝑠𝐾𝑠
−1 (𝑌 − 𝑚𝑓

𝑠(𝑥𝑠))  

               
            𝜎̂𝑠2(𝜏 + ℎ) =  𝐾∗∗

𝑠 − 𝐾∗
𝑠𝐾𝑠

−1𝐾∗
𝑠𝑇  

            𝑝̂𝑠(𝜏 + ℎ)  ∈  𝑃𝑠  
𝑢𝑠(𝜏 + ℎ)  ∈  𝑈𝑠                                                                                                                                                                     

(13) 

                                                                    

where 𝑠 stands for machines 𝑎, 𝑏, 𝑐, … ; 𝑃𝑠 is state output 

constraint set, 𝑈𝑠 is set of feasible solutions; ‖𝑥‖𝐴
2 =  𝑥𝑇𝐴𝑥 

Euclidian norm for 𝑥 ∈ 𝑅𝑛 and 𝑄, 𝑅 are positive definite 

matrices. 

 

 

Fig. 3 Structure of GP based MPC. Optimization problem in (10) 

is solved in every τ time step. Here, u -optimized control input 

vector applied to machines, d - external disturbance vector and 

y - output vector measured from machines. 

 

Minimizing terms mentioned above are common ones when 

working with GP model based dynamical systems and are 

non-unique. It can be chosen freely depending on the desire 

and constraints. In Figure 3 one can see overall MPC loop 

structure together with manufacturing process whose energy 

usage is controlled through GP model with the data provided 

by sensors set up on machines. 

 

V. NUMERICAL EXAMPLE 

 

Due to complexity and being time consuming of data 

collection from manufacturing process, we omit illustration 

GP based MPC on real industrial system. Rather, the 

accompanying state space model below (11) outlines the 

utilization of proposed GP strategy for system identification 

of highly fluctuating and non-periodic system. Simulation 

were carried out in Matlab software and CPU Intel Core i5-

5200U.  

Consider the following discrete nonlinear system: 

 

{
 
 

 
  𝑦1(𝜏 + 1) =  𝑦1(𝜏) + sin(𝑦1(𝜏)) +

1

2
(𝑢1(𝜏) + 𝑢3(𝜏)) + 𝜈(𝜏)

𝑦2(𝜏 + 1) =  𝑦2(𝜏) +
4

5
cos(𝑦1(𝜏)) +

3

5
𝑢1(𝜏) − 𝑢2(𝜏)              

𝑝(𝜏) =  𝑦2(𝜏) + 𝑤(𝜏)                                                    

(14) 

 

The yield of the given model is output 𝑝 (can be looked as 

machine power) that is disrupted with Gaussian white noise 

with 𝜈  ̴ N(0,0.002), whereas state  𝑦
1
 is suffered by noise 

𝑤  ̴ N(0,0.0035) We generate 3 inputs by a random number 

generator with uniform distribution in the magnitude between 

10 and 20 for the first input, between 5 and 10 for the second 

input, and in range 0 and 1 for the last input with number of 

samples N =  600 by not changing control signals  𝑢1 

consecutive 4 time instants,  𝑢2 consecutive 6 time instants 

and  𝑢3 consecutive 8 time instants.  Here, our task is to obtain 

a GP model for given inputs of the discrete-time system 

described by (11) based on statistical data and by following 

step by step the proposed methodology in the section III. We 

use 66 % of the generated data set N (the rest is used for 

testing), and the system is modeled by Gaussian Process 

Regression with zero mean and the covariance function, which 

is composed of sum of squared exponential and periodic 

covariance functions. We tried several composite covariance 

functions, but this one performed with better accuracy. 

 

 

Fig. 4 GP model performance for the training signal. Upper 

part plots the true values, the predicted mean and 95 % 

confidence intervals, whereas below part shows the absolute 

residuals. 

 

 

Fig. 5 Control signals of training data 
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Fig. 6 Control signals of test data 

 

 

Fig. 7 GP model performance for the test signal. Upper part 

plots the true values, the predicted meanand 95 % confidence 

intervals, whereas below part shows the absolute residuals 

 

Models of various orders were fitted as highlighted in Table 1 

, as a result our proposed approach found the second order 

model with 𝑙𝑝 = 2, 𝑙𝑢1 = 1,  𝑙𝑢2 = 1,  𝑙𝑢3 = 1, and 𝑙𝑑 = 0 as 

the most appropriate with metrics NRMSE=0.00950 and 

MSLL=-3.1754 provided in [20]. The results of the Gaussian 

Processes model to the training and test signals are given in 

Figure 4 and Figure 7, respectively. One can see that, even 

though test data fitting graph has larger variance, it still 

captures the trajectory well. On the other hand, Figure 5 and 

Figure 6 illustrates control signals applied to the system during 

model identification, where we can see not repeated line 

graphs, values are different for each control signal in both 

phases. Furthermore, it is remarkable that the system is depend 

on control signals at the previous time step, because in absence 

of controller signal, the accuracy experienced a significant 

decrease Table 1. 

Table 1. GPR modeling accuracy results for test data. 

MODEL ORDER NRMSE MSLL 

𝑙𝑝 = 3,𝑙𝑢1 = 2, 𝑙𝑢2 = 2, 𝑙𝑢3 = 2, 𝑙𝑑 = 1 0.15098 -1.02915 

𝑙𝑝 = 2,𝑙𝑢1 = 1, 𝑙𝑢2 = 1, 𝑙𝑢3 = 1, 𝑙𝑑 = 0 0.00950 -3.1754 

𝑙𝑝 = 2,𝑙𝑢1 = 1, 𝑙𝑢2 = 2, 𝑙𝑢3 = 1, 𝑙𝑑 = 0 0.01844 -2.09245 

𝑙𝑝 = 2,𝑙𝑢1 = 0, 𝑙𝑢2 = 1, 𝑙𝑢3 = 1, 𝑙𝑑 = 0 0.11951 1.08813 

 

VI. CONCLUSIONS 

This paper tried to show how dynamic systems can be 

modelled using machine learning. Specifically, Gaussian 

Processes Regression is applied to historical data collected 

from sensors of production machines. Once we have defined 

the modelling sequence, we connected the idea with the 

possibility to use this algorithm in controlling the 

manufacturing system in an optimized way, where the Model 

Predictive Control loop defines optimal solutions for each 

control time step. In the end, the numerical example 

presented GPR modelling potentials. The proposed approach 

can be looked at as a new tool for identifying energy-saving 

perspectives and quantifying their respective energy-saving 

potentials. 

Moreover, it provides a trust region with 95 % confidence 

that enables the discovery of unseen energy-saving challenges 

that seem hard to identify. In particular, this can be a 

fundamental idea for companies with successful energy 

improvement programs to empower their research areas for 

further improvement. Our next mission will be to show the 

interpretability and advantages of the proposed method 

through experimental results based on data of real system 

dynamics. 
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