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Abstract—We propose a conceptually simple framework for fast 

COVID-19 screening in 3D chest CT images. The framework can 

efficiently predict whether or not a CT scan contains pneumonia 

while simultaneously identifying pneumonia types between COVID-

19 and Interstitial Lung Disease (ILD) caused by other viruses. In 

the proposed method, two 3D-ResNets are coupled together into a 

single model for the two above-mentioned tasks via a novel prior- 

attention strategy. We extend residual learning with the proposed 

prior-attention mechanism and design a new so- called prior-

attention residual learning (PARL) block. The model can be easily 

built by stacking the PARL blocks and trained end-to-end using 

multi-task losses. More specifically, one 3D-ResNet branch is 

trained as a binary classifier using lung images with and without 

pneumonia so that it can highlight the lesion areas within the 

lungs. Simultaneously, inside the PARL blocks, prior-attention 

maps are generated from this branch and used to guide another 

branch to learn more discriminative representations for the 

pneumonia-type classification. Experimental results demonstrate 

that the proposed framework can significantly improve the 

performance of COVID-19 screening. Compared to other methods, 

it achieves a state-of-the-art result. Moreover, the proposed method 

can be easily extended to other similar clinical applications such as 

computer-aided detection and diagnosis of pulmonary nodules in 

CT images, glaucoma lesions in Retina fundus images, etc. 

 

Index Terms—COVID-19, pneumonia, residual learning, 
medical image classification, deep attention learning. 

 
I. INTRODUCTION 

HE break of novel coronavirus pneumonia (COVID-19) 

has rapidly spread to most countries worldwide. There have 

been 5,521,252 confirmed cases all around the world . In 

clinical practice, compared to the real- time reverse-

transcriptase polymerase chain reaction (RT-PCR), computed 

tomography (CT) is an effective tool for much faster screening 

of COVID-19. However, manual screening of COVID-19 from 

CT images is a time-consuming and labor- intensive task, since 

doctors must find the lesions from volumetric chest CT scans in 

a slice-by-slice manner 

 

 
Fig. 1. Examples of (a) COVID-19 and (b) interstitial lung disease 

(ILD) in CT images as shown in the left and the right column, 
respectively. The main lesion regions are indicated with red arrows and 
it can be seen that the lesions have inter-class similarity and intra-class 
variation, which is one of the main challenges for the COVID-19 
screening task. 

 
  Besides, as shown in Fig. 1, the manifestations of COVID-19 

in CT images are similar to other types of viral pneumonia, 

which makes it hard to manually distinguish COVID-19. 

A reliable computer-aided diagnosis system (CADs) of 

COVID-19 is supposed to be useful in clinical practice, which 

can alleviate the doctor’s workload and improve the detection 

efficiency. However, developing such a system is a challenging 

task, because the lesions of pneumonia in CT images have wide 

variations in appearances, sizes, and locations in the lung 

regions, as shown in Fig. 1. It seems difficult to design suitable 

methods to handle the complicated characteristics of the 

pneumonia lesions using just the classical image processing 

techniques or conventional machine learning methods  that rely 

on handcrafted descriptors. 
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In recent years, the development of deep convolutional 

neural networks (DCNNs) has led to a series of breakthroughs 

for image classification, object detection and semantic 

segmentation in the field of natural image processing. CNNs 

expert at automatically learning rich high- level discriminative 

semantic features from images, removing the need for 

handcrafted descriptors. These breakthroughs also revealed 

that deeper models can achieve superior performance. 

Therefore, it is feasible that training very deep CNN-based 

models to achieve promising performance in COVID-19 

screening. Nowadays, it is very easy to construct robust deep 

models with more than 100 layers using residual learning 

blocks. 

However, some challenges remain and should be addressed 

when applying the above-mentioned deep learning methods for 

the proposed COVID-19 screening task. First, it is very hard to 

collect sufficient samples together with accurately annotated 

labels to train very deep models in a short time, especially for 

object detection and segmentation models. Training of these 

models requires additional meticulous annotations that were 

manually labeled by experienced doctors. One example is that 

training most object detection models requires bounding boxes 

of desired targets, while training segmentation models requires 

lesion-aware masks. Labeling these annotations is also very 

time-consuming and impractical to doctors. Second, a 

volumetric CT scan has three dimensions. The computational 

cost and memory requirement both increase with 3D inputs. It 

is infeasible to train a very deep 3D CNN-based model due to 

the constraint of hardware resources. Third, a perplexing 

problem is the inter-class similarity and intra-class variation of 

pneumonia lesions, as demonstrated in Fig. 1. Finally, a lung 

image infected with pneumonia still contains a large part of 

non-lesion regions, which also have a wide and complicated 

variation of tissues. Obviously, the non-lesion regions have 

great negative impact on the performance. It is much more 

complicated than detecting objects of scenes in natural images. 

To address the above-mentioned issues, we propose a novel 

multi-task prior-attention residual learning strategy for one- 

stage lesion-aware COVID-19 screening in CT images.  

It exhibits the following appealing properties: 

(1) Two 3D-ResNet based sub-networks are integrated into a 

single model for pneumonia detection and its type-classification. 

The sub-network for the type-classification task is implemented 

as a binary classifier and it can identify COVID-19 from 

interstitial lung disease (ILD) caused by other viruses. Besides, 

the sub-network for the detection task is also designed as a 

binary classifier that can predict whether or not a given CT scan 

contains pneumonia. Compared to object detection or 

segmentation methods, the proposed method (that relies on only 

classification models) is much easier to implement, because it 

requires only weak image-level labels and fewer hyper- 

parameters at the training stage. Training models which use 

only image-level labels make it possible to collect relatively 

sufficient samples in a short time. 

(2) Inspired by some recent advances of deep attention 

learning mechanisms especially by the self-attention residual 

learning for state-of-the-art skin lesion classification,we 

designed a “prior-attention” mechanism in the proposed 

models. Many works have demonstrated that a DCNN model 

trained for a classification task has a remarkable localization 

ability that can highlight the discriminative regions in images, 

despite being trained with only image-level labels. Since the 

proposed sub-network for the detection task is designed as a 

binary classifier and trained using CT scans with and without 

pneumonia, it is supposed to have the ability to provide lesion-

attention information. Therefore, we fully use its hierarchical 

feature maps to generate lesion-aware soft attention maps. 

Then, we feed the attention maps into the corresponding layers 

of the type-classification sub-network to make it focus on the 

lesion regions. 

(3) Similar to the residual learning, the proposed strategy is 

also based on modular designment. The prior-attention 

mechanism is incorporated into residual blocks (referred to as 

PARL blocks). Thus, deep models can be easily built by 

stacking the PARL blocks and trained end-to-end. 

(4) The afore-mentioned issues (i.e., insufficiency of training 

data, inter-class similarity, intra-class variation, and non-lesion 

regions of images) are the common challenges in the whole 

field of medical image processing. Among these issues, the 

“non-lesion regions” can aggravate the other issues and it is the 

main obstacle in improving performance, especially under 

scenarios where the non-lesion regions in medical images have 

complicated tissue variations. The proposed method can 

alleviate this issue by learning effective lesion-aware attention 

information from targeting lesion images (or patches) and 

normal images (nor background patches). Therefore, the 

proposed method can be also applied to a variety of similar 

scenarios in clinical practice, such as skin lesion classification  

thorax disease classification, glaucoma detection, pulmonary 

nodule detection and their malignancy prediction etc. 

 

II. RELATED WORK 

A. Semantic Segmentation 

Semantic segmentation plays important role in the field of 

pattern recognition. Its main task is to identify all pixels that 

belong to objects of a specific class in an image. To this end, 

many DCNN-based segmentation methods  have been 

proposed in literature. Some  proposed a fully convolutional 

networks (FCN) for semantic segmentation in natural images. 

Convolutional operations are stacked layer-by- layer to extract 

hierarchical feature maps of an input image. The final layer of 

the feature maps is then used to generate a pixel- wise 

probability score map indicating which class the pixels 
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belong to. Upon the FCN, several variants were developed for 

more precise segmentation. 

Recently, DCNN models were also developed for medical 

image segmentation.   In this study, a 3D U-Net was also 

trained for lobe segmentation as a pre-processing step of the 

COVID-19 detection. 

B. Deep Attention Learning 

The performance of a model is supposed to depend heavily 

on the model depth (i.e., the deeper, the better). To train robust 

models as deep as possible, many prior works have focused on 

either collecting large-scale datasets (e.g., the ImageNet 

database  or developing powerful computational tricks, such as 

the dropout normalizations and “shortcut connections”. 

Among these tricks, the dropout and normalizations can 

effectively suppress the over-fitting issue. However, the main 

obstacle in training deep models is the so- called degradation 

problem. The residual learning technique successfully 

addresses this issue using residual learning blocks with 

“shortcut connections”. Although these tricks have 

demonstrated their validity in many applications, it is still a 

challenge to train very deep models in some specific scenarios 

(e.g., the field of medical image analysis) due to the 

complicated application tasks and the shortage of large-scale 

datasets. 

Recently, some works have investigated that the attention 

mechanism is an effective technique that helps further improve 

the performance of DCNNs  The network is constructed by a 

cascade of several attention modules. Each module contains a 

trainable encoder-decoder structure to learn soft attention 

masks, which are then multiplied to the convolutional feature 

maps to highlight important information. 

Although all the above-mentioned attention mechanisms 

effectively improve the performance of deep learning models 

in large-scale natural image classification tasks, they still 

suffer from a main drawback for medical image 

classification. Generally, lesions in medical images have the 

issue of inter- class similarity, intra-class variation and 

complicated contextual information as discussed in Section I. 

These attention mechanisms (trained using only targeted 

lesion. In contrast, the proposed prior-attention mechanism 

can learn more effective soft-attention maps, since the 

training is driven by binary classification between lesion 

images and normal images without lesions. 

 

 In contrast, the proposed prior-attention mechanism can learn 

more effective soft-attention maps, since the training is driven 

by binary classification between lesion images and normal 

images without lesions. 

C. COVID-19 Screening 

Some attempts  have been made to develop CAD systems 

for COVID-19 screening in CT images. For example,  trained 

a 2D convolutional neural network (CNN) for three-category 

classification of CT scans, i.e. COVID-19, community 

acquired pneumonia (CAP), and non-pneumonia. The network 

takes a series of CT slices as input and uses the 2D-ResNet50 

as a backbone to extract CNN features from each slice of the 

CT series. The features are then combined using a max-

pooling operation and the resulting map is fed to a fully 

connected layer to generate a probability score for each class. 

first used a 3D segmentation model, to segment lesion 

candidates from CT images. Then, the candidates were 

classified into COVID-19 or Influenza-A viral pneumonia 

using a 2D-ResNet18 model. 

Although these attempts have demonstrated their validity in 

COVID-19 screening, some drawbacks remain in clinical 

application. More specifically, there are many causes of 

pneumonia such as infections from various types of bacteria and 

viruses. Classified pneumonia into either COVID- 19 and 

Influenza-A. This classification task is too simple for clinical 

application.  

 Seems more significant in clinical application as their model 

can distinguish COVID-19 from CAP, rather than just 

Influenza-A. However, one of the main challenges in clinical 

practice is identifying COVID-19 from other viral pneumonia 

types. The CAP cases collected by contain a large number of 

non-viral pneumonia cases. Therefore, the ability to 

differentiate COVID-19 from other viral pneumonia types 

needs further verification. Besides, they trained a single 2D- 

CNN for classifying non-pneumonia (Non-Pneu), CAP, and 

COVID-19. This training strategy may fail to learn sufficient 

discriminative semantic representations for effectively 

differentiating pneumonia types due to two main reasons: (1) 

Models trained for multi-class categorization tasks may suffer 

from the inter-class interference issue. For instance, the Non-

Pneu cases inevitably interfere with the training of 

classification between COVID-19 and other pneumonia types. 

(2) A lung image infected with pneumonia still contains a large 

part of non-lesion regions as mentioned in Section I, which also 

prevents the improvement of classification performance. 

In summary, our contributions can be concluded as: (1) our 

study focuses on developing techniques for classifying COVID- 

19 from other types of viral pneumonia. (2) We directly use 3D 

CNNs to extract features from the whole 3D lung regions so 

that richer 3D spatial information can be learned. (3) We 

conduct experiments to demonstrate that the proposed method 

can achieve state-of-the-art performance. The main 

improvement of the proposed method relies on the application 

of prior-attention mechanism and multi-task training for 

learning more discriminative lesion-aware representation for 
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the COVID-19 screening. 

 
III. METHODS 

The proposed framework for the COVID-19 screening 

contains two main stages: (a) lobe segmentation using 3D-Unet 

[20] as a pre-processing step and (b) pneumonia prediction 

using 3D-ResNets with prior-attention mechanism.   

A. Lobe Segmentation 

Lung segmentation in CT images is an important pre- 

requisite step for automatic pneumonia detection. The left and 

right human lungs are divided into a total number of five lobes 

(i.e., two lobes in the left lung and three in the right). Previous 

investigators used UNet or its variants to segment lung regions 

or lung lobes . Lobe segmentation is more complicated than 

lung segmentation. However, in clinical practice, lobe 

information can play a pivotal role as reference for doctors to 

locate pulmonary lesions and perform their quantitative 

analysis of the lesions . Hence, it is a basic function in most 

commercial CAD systems. In this study, we also directly 

segment lung regions into five lobes. 

To achieve this task, we trained a 3D-UNet [20] for lobe 

segmentation in volumetric CT scans. For a given scan, we first 

use thresholding and connected-component labeling algorithms 

to obtain a binary lung mask that indicate the coarse lung 

regions. Then, we crop a sub-image containing lung regions 

covered by convex hull of the lung mask, which 

removes noise outside the lungs, as well as reducing the cost of 

GPU memory. Finally, we apply the trained 3D-UNet model on 

the sub-image to obtain its lobe mask. 

B. Pneumonia Prediction 

After the lobe mask is obtained, we crop refined lung regions 

according to the lobe mask. The cropped image is then resized 

to 96  96  96 and fed into the 3D-ResNets for pneumonia 

prediction. 

As shown in Fig. 2, two 3D-ResNet based sub-networks are 

designed for two tasks: pneumonia detection (as demonstrated 

with green cubes) and pneumonia-type classification (as 

demonstrated with red cubes). The detection sub-network is 

implemented as a binary classifier that can identify whether or 

not a given CT scan contains pneumonia, while the type- 

classification sub-network is implemented for binary 

classification of ILD and COVID-19. The two sub-networks are 

fused together using an extra fully-connected layer (as 

illustrated with the yellow rectangle in Fig. 2) for final three- 

category classification, i.e., Non-Pneu, ILD, and COVID-19. 

To enhance the COVID-19 screening, the convolutional layers 

of the two sub-networks are closely combined via a prior- 

attention mechanism. The inference procedure can be expressed 

as: 

𝑷 = (𝑰, 𝑾𝑑𝑒 , 𝑾𝑐𝑙𝑠|𝑆(𝑾𝑑𝑒𝑡 ), 𝑾𝑓𝑐), (1) 

where 𝑰 is the volumetric lung image that fed into the model 𝑓. 

𝑾𝑑  and 𝑾𝑐𝑙𝑠  indicate  the  learned  convolutional  weights of 
 

 

Fig. 2. The architecture of the proposed multi-task prior-attention residual learning strategy. Attention maps are transferred from the detection 
branch to the pneumonia type-classification branch inside the prior-attention residual learning (PARL) blocks. Three losses are integrated in the 
training stage, containing lesion detection loss (𝐿𝑑𝑒𝑡), type classification loss (𝐿𝑐𝑙𝑠) and composed classification loss of the above two losses (𝐿𝑐𝑜𝑚). 

Two hyper-parameters 𝑝 and {𝑞𝑖|𝑖 = 1,2, … , 𝑝} are the number of groups and the number of blocks in each group. 𝒙1 and 𝒙2 represent the input 
feature maps while 𝑓1(𝒙1) and 𝑓2(𝒙2) represent the output feature maps of the two branches. σ(∙) denotes the identity mapping (short-cut 

connection) and 𝑆𝑐(𝑶) is the soft attention maps produced by the detection branch. α(𝒙1, 𝒙2) is the attention connection. 
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the detection and the type-classification sub-network, 

respectively. 𝑾𝑓𝑐 denotes the learned weights of the fully- 

connected layers. (∙) denotes an attention function. The output 

𝑷 is a softmax probability vector: 

 

𝑷 = [𝑝𝑛𝑜𝑛, 𝑝𝑖𝑙𝑑, 𝑝𝑐𝑣𝑑], (2) 

 
where 𝑝𝑛𝑜𝑛, 𝑝𝑖𝑙𝑑, and 𝑝𝑐𝑣𝑑 are the probabilities corresponding 

to the three classification categories (i.e., Non-Pneu, ILD, and 

COVID-19), respectively. 

Normally, the lung areas in a CT image contain a large part 

of non-lesion regions, where complicated variation of lung 

tissues exist, e.g., vessels and fibers. Obviously, these non- 

lesion regions have negative impact on the type-classification. 

To alleviate this issue, we generate soft lesion-aware maps 

using the convolutional feature maps of the detection sub- 

network who has remarkable lesion localization ability. The 

soft maps are then fed into the type-classification sub-network 

to make it pay attention to the lesion regions. Since the attention 

information is generated from another model, rather than the 

type-classification model itself, we call it “prior-attention”. 

  classification branch, respectively. 𝒙1 is the input feature map 

of the residual unit in the detection branch. 𝛾 is a weighting 

factor that controls a trade-off between the attention feature map 

and other two feature maps. In our implementation, 𝛾 is set to 1.0 

by default for simplicity reasons. According to the original 

residual learning , the short connection can be simply 

implemented as an identity mapping: 

 
𝜎2(𝒙2) = 𝒙2. (4) 

 

In (3), the attention connection (𝒙1, 𝒙2) is the key factor to 

improve the classification performance. It is obtained by 

multiplying a soft attention map to the input feature map on an 

element-wise basis: 

 
(𝒙1, 𝒙2) =  (𝑶) ∙ 𝒙2, (5) 

 

where 𝑶 = ℎ1(𝒙1) denotes the feature maps of the final layer 

in the detection branch. The term of (∙) represents a 

normalization function used to generate the soft attention map 

from the feature map 𝑶: 

 
𝑂𝑐 

𝑆(𝑶) = {𝑚|𝑚𝑐 = 
𝑒
 

𝑖,𝑗,𝑘 

𝑂𝑐 }, (6) 
∑ ′, ′ ′ 𝑒 𝑖′,𝑗′,𝑘′ 

  

C. PARL Block 

As shown in Fig. 2, each PARL block has two branches: a 

branch for the pneumonia detection task (demonstrated by the 

green cubes) and another branch for the type-classification task 

(demonstrated by the red cubes). 

The classification branch is a prior-attention residual 

learning unit that is composed of three stacked 3D 

convolutional layers, a “shortcut connection”, and an “attention 

connection” (each convolutional layer is followed by a batch 

normalization layer and a ReLU activation layer which are not 

drawn in Fig. 2 for simplicity reasons). If the shortcut 

connection, the attention connection, and the underlying 

mapping  fitted  by  the  convolutional  layers  are  denoted  as 

𝜎2(𝒙2), 𝛼(𝒙1, 𝒙2)and ℎ2(𝒙2, 𝑾2), respectively, the output  of 
𝑖  𝑗 ,𝑘 

 
 

where (𝑖, 𝑗, 𝑘) and 𝑐 represent the spatial coordinates and the 

channel index of 𝑶, respectively. (∙) uses a spatial softmax 

function to highlight the important regions in each channel. 

Note that the channel number of 𝑶 should be equal to that of 

𝒙2 to satisfy the element-wise multiplication (this is our default 

implementation for simplicity reasons). Else, a 1  1  1 

convolutional operation can be performed on 𝑶 to harmonize 

the channel number. 

D. Model Building and Loss Function 

A deep model with arbitrary depth can be easily constructed 

by stacking PARL blocks as shown in Fig. 2. Similar to the 

original residual learning, multiple blocks are grouped 

together followed by a transition layer (CNN operations with 

stride 2) to reduce spatial size of the feature maps. In our 

implementation, two main hyper-parameters are used for 

building the model: 𝑝 and 𝑞𝑖|𝑖 = 1,2, … , 𝑝, which are used to 

control the number of groups and the number of PARL blocks 

in each group, respectively. 

To train the model, a mini-batch of samples, including 

normal images without pneumonia, images with ILD, and 

images with COVID-19 are fed into the model per iteration. The 

model is optimized by minimizing an objective function of 

multi-task loss that is defined as: 

the unit can be expressed as follows: 𝐿 = 
1 
∑𝑀 

 𝐿𝑑𝑒𝑡 (𝑦𝑑𝑒𝑡 , 𝑦 𝑑𝑒𝑡) + 
𝑀 𝑖=1 𝑖 𝑖 

1     
∑𝑀𝑐𝑙𝑠 𝑦𝑑𝑒𝑡 𝐿𝑐𝑙𝑠 (𝑦𝑐𝑙𝑠 , 𝑦 𝑐 ) + 

1  
∑𝑀 

  

𝐿𝑐(𝑦𝑐𝑜𝑚 , 𝑦 𝑐𝑜𝑚), (7) 

𝑓2(𝒙2) = 𝜎2(𝒙2) + ℎ2(𝒙2, 𝑾2) + 𝛾 × 𝛼(𝒙1, 𝒙2), (3) 𝑀𝑐𝑙𝑠 
𝑖=1 𝑖 𝑖 𝑖 𝑀 𝑖=1 𝑖 𝑖 
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where the first term, the second term, and the third term are the 

cross entropy for the detection, the binary type-classification, 

and the final combined three-category classification task, 

respectively. 𝑀 and 𝑀𝑐𝑙𝑠 are mini-batch size and the number of 

positive samples (i.e., ILD and COVID-19) in the mini-batch. 

  and 𝑦 𝑖  represent the ground truth and the predicted label. For 

computing the loss of the detection branch, 𝑦𝑑𝑒𝑡 is set to 0 if the 

sample is a normal image, and is set to 1 if the sample is an 

image infected with ILD or COVID-19. For computing the loss 

of the classification branch, the negative samples (i.e., the 

normal images) are directly ignored and 𝑦𝑐𝑙𝑠 is set to 0 or 1 if 

the  positive  sample is  infected  with  ILD or COVID-19. The 
term 𝑦𝑑𝑒𝑡𝐿𝑐𝑙𝑠(𝑦𝑐𝑙𝑠, 𝑦 𝑐𝑙𝑠) means the binary classification loss is 

 

 
Fig. 3. The 3D-UNet architecture for lobe segmentation. Input image 

size is 128  96  128 and output size is 128  96  128  6 where the 
number of channels (i.e., 6) correspond to 6 categories, including non- 
lung regions and 5 lobes. 

𝑖 𝑖 𝑖 

activated only for positive samples (i.e., 𝑦𝑑𝑒𝑡 = 1) and disabled 

otherwise ( 𝑦𝑑𝑒𝑡 = 0 ). For computing the loss of the final 

combined three-category classification task, 𝑦𝑐𝑜𝑚 is set to 0, 1 

or 2 for Non-Pneu, ILD, and COVID-19, respectively. 

 

IV. MATERIALS 

For this study, ethical approval was obtained, and the 

informed consent requirement was waived (Approval Number: 

KY2020036). We collected CT scans of 4657 patients (F/M, 

1946/2711; mean age: 46  17 years) from several cooperative 

hospitals, including a total of 936 normal scans, 2406 scans 

with ILD caused by viruses, and 1315 scans with COVID-19. 

All the pneumonia diseases were confirmed as positive by RT- 

PCR or serum antibody test besides COVID-19. The ILD 

patient inclusion or exclusion criteria was executed based on 

“An official American Thoracic Society/European Respiratory 

Society statement” by two experienced respiratory physicians 

(HL with 10 years of experience and FX with 15 years of 

experience). All the ILD CT images were independently 

reviewed by two experienced radiologists in CT diagnostics 

(XL with 8 years of experience and CL with 10 years of 

experience). The ILD CT images must have the pulmonary 

fibrosis features. In clinical practice, there were patients who 

underwent several scans. For each of these patients, we selected 

only the scan that was firstly reconstructed with the thinnest 

slice-thickness for building the dataset. 

CT examinations were performed using scanners from 

different manufacturers with standard chest imaging protocols. 

Each scan contained 96-539 slices with a varying slice- 

thickness from 0.5 mm to 3 mm. The reconstruction matrix of 

each slice was 512  512 with in-plane pixel spatial resolution 

from 0.63 mm  0.63 mm to 0.83 mm  0.83 mm. From these 

collected scans, we randomly selected 60 scans (20 scans of 

each class) for online-evaluation, 600 scans (200 scans of each 

class) for offline-test, and the rest 3997 scans for training and 

5-fold cross-validation. 

In order to train the 3D-Unet for the lobe segmentation, we 

collected a total of 251 chest CT scans with corresponding 

voxel-level lobe labels. Among these scans, 51 cases were 

pneumonia-free and publicly available. The 3D-Unet trained 

using just these scans were not reliable for 

segmentation of scans infected with pneumonia. Hence, we 

collected additional 200 scans with pneumonia to augment the 

training dataset. These scans were annotated by the two 

radiologists (i.e., XL and CL) and were not included in the 

above-mentioned 4657 scans. 

To reduce the variations such as slice-thickness between the 

scans, we interpolated each scan to 1 mm  1 mm  1mm and 

converted CT numbers (Hounsfield units) to gray-scale values 

using lung window (L/W: -500 HU/1500 HU). 

 
V. EXPERIMENTS 

A. Model Configurations 

Network architecture of the 3D-UNet trained for lobe 

segmentation is shown in Fig. 3. The input image size is 128  

96  128 (Z  Y  X) and the output size is 128  96  128  6. 

The six channels of output map correspond to predicted 

probabilities of six categories, including non-lung regions, 

upper and inferior lobes of left lung, and upper, middle, and 

inferior lobes of right lung, respectively. As introduced in 

Section III-A, to remove most non-lung regions, each scan is 

pre-segmented using a coarse lung segmentation method. The 

resulting image has a wider side in the X direction than the Y 

direction. Hence, we set the anisotropic input size (i.e., 128  

96  128) empirically in our implementation to keep the shape 

and the size of the image as much as possible. 

During the training stage of 3D-Unet, a mini-batch size of 2 

samples were fed into the model. In this study, we focused only 

on the pneumonia classification tasks, rather than the lobe 

segmentation task. More details of 3D-UNet and lobe 
 

 
Fig. 4. The main difference between the residual blocks (a) without 

attention (WARL), (b) with self-attention (SARL) [24], and (c) with the 
proposed multi-task prior-attention (PARL). 



International Journal of Advanced Scientific Innovation   Volume 02 Issue 01,  June 2021 

ISSN: ISSN: 2582-8436 

7  

TABLE I 

FIVE NETWORK ARCHITECTURES FOR COMPARISON 

Layer name Output size WA-66 SA-66 WA-66-M SA-66-M PA-66-M 

Conv header 48  48  48 C16, (5, 5, 5), /2 C16, (5, 5, 5), /2 C16, (5, 5, 5), /2 C16, (5, 5, 5), /2 C16, (5, 5, 5), /2 

Group #1 48  48  48 
C16, WARLs 
(𝑞 = 3) 

C16, SARLs 
(𝑞 = 3) 

C16, MWARLs 
(𝑞 = 2) 

C16, MSARLs 
(𝑞 = 2) 

C16, PARLs 
(𝑞 = 2) 

Transition 24  24  24 
C32, (3, 3, 3), /2; 
C32, (3, 3, 3), /1 

C32, (3, 3, 3), /2; 
C32, (3, 3, 3), /1 

C32, (3, 3, 3), /2; 
C32, (3, 3, 3), /1 

C32, (3, 3, 3), /2; 
C32, (3, 3, 3), /1 

C32, (3, 3, 3), /2; 
C32, (3, 3, 3), /1 

Group #2 24  24  24 
C32, WARLs 
(𝑞 = 4) 

C32, SARLs 
(𝑞 = 4) 

C32, MWARLs 
(𝑞 = 2) 

C32, MSARLs 
(𝑞 = 2) 

C32, PARLs 
(𝑞 = 2) 

Transition 12  12  12 
C64, (3, 3, 3), /2; 
C64, (3, 3, 3), /1 

C64, (3, 3, 3), /2; 
C64, (3, 3, 3), /1 

C64, (3, 3, 3), /2; 
C64, (3, 3, 3), /1 

C64, (3, 3, 3), /2; 
C64, (3, 3, 3), /1 

C64, (3, 3, 3), /2; 
C64, (3, 3, 3), /1 

Group #3 12  12  12 
C64, WARLs 
(𝑞 = 9) 

C64, SARLs 
(𝑞 = 9) 

C64, MWARLs 
(𝑞 = 2) 

C64, MSARLs 
(𝑞 = 2) 

C64, PARLs 
(𝑞 = 2) 

Transition 6  6  6 
C128, (3, 3, 3), /2; 
C128, (3, 3, 3), /1 

C128, (3, 3, 3), /2; 
C128, (3, 3, 3), /1 

C128, (3, 3, 3), /2; 
C128, (3, 3, 3), /1 

C128, (3, 3, 3), /2; 
C128, (3, 3, 3), /1 

C128, (3, 3, 3), /2; 
C128, (3, 3, 3), /1 

Group #4 6  6  6 
C128, WARLs 
(𝑞 = 3) 

C128, SARLs 
(𝑞 = 3) 

C128, MWARLs 
(𝑞 = 2) 

C128, MSARLs 
(𝑞 = 2) 

C128, PARLs 
(𝑞 = 2) 

Transition 3  3  3 
C256, (3, 3, 3), /2; 
C256, (3, 3, 3), /1 

C256, (3, 3, 3), /2; 
C256, (3, 3, 3), /1 

C256, (3, 3, 3), /2; 
C256, (3, 3, 3), /1 

C256, (3, 3, 3), /2; 
C256, (3, 3, 3), /1 

C256, (3, 3, 3), /2; 
C256, (3, 3, 3), /1 

Flatten 1  1  1 [6912] [6912] [6912, 6912] [6912, 6912] [6912, 6912] 

FC1 1  1  1 [1488] [1488] [512, 512] [512, 512] [512, 512] 

Concat 1  1  1 None None [1024] [1024] [1024] 

FC2 1  1  1 [512] [512] [512] [512] [512] 

Y_Preds 1  1  1 [3] [3] [3] [3] [3] 

Total parameters 15,959,851 15,959,851 15,988,903 15,988,903 15,988,903 

Input image size is 96  96  96. WARLs, SARLs, and PARLs are the residual blocks illustrated in Fig. 4. MWARLs and MSARLs mean the multi- 

task residual learning block without attention and with self-attention, respectively. 𝑞 is the number of blocks in each group. C is the number of 

features. (, , ) is the kernel size and / is the stride. [] means fully connections. 

  

For  classification  tasks, we compared the proposed   multi- 

task prior attention residual learning strategy for the COVID- 

19 screening with two baselines. One is the residual learning 

without attention and another is the residual learning with the 

self-attention mechanism. All of these strategies are based on 

modular designment.  

In our experiments, a total of five models were built for 

comparison, namely WA-66, SA-66, WA-66-M, SA-66-M, and 

PA-66-M as tabulated . The letters “WA”, “SA”, and “PA” in 

the model names are the abbreviations of the without- 

attention, the self-attention, and the prior-attention strategy, 

respectively. The number “66” in the model names indicates the 

number of convolutional layers in each model. To guarantee 

comparison consistency, all models have the same input image 

size (96  96  96) and have the same magnitude of parameters. 

Each model contains four groups of corresponding blocks (i.e., 

𝑝 = 4). Similar to many previous works [43]-[45], the WA-66 

and SA-66 were trained as classifiers that directly identify three 

categories, i.e., Non-Pneu, ILD and COVID-19. The WA-66- 

M, SA-66-M, and PA-66-M models were trained using the 

proposed multi-task learning strategy for ablation studies. Both 

the WA-66-M and SA-66-M models have identical network 

architecture to the PA-66 model but without the prior-attention 

mechanism. In the SA-66-M model, the self-attention 

mechanism was incorporated in the pneumonia-type 

classification branch. 

 

B. Training Details and Evaluation Metrics 

All classification models were trained using Google 

Tensorflow (version 2.0 with Keras API) on NVIDIA RTX 

2080Ti GPUs. During the training stage, the loss of each model 

was minimized using the momentum optimizer with a learning 

rate of 0.0001, decaying every 500 iterations using an 

exponential rate of 0.95. The total number of iterations was 30k 

(300 epochs multiply by 100 iterations). 

At each iteration, a mini-batch of 10 samples were fed into 

the models, including 4 normal scans, 3 scans with ILD, and 3 

scans with COVID-19. We augmented the samples in real time 

by randomly rotating each sample to 0, 90, 180, and 270 degrees 

along the Z axis, and randomly flipping them in the X, Y, and 

Z directions. Once an epoch was completed, we performed 

online-evaluations using 60 samples (20 samples for each type). 

To avoid the over-fitting issue, we saved just the model that 

achieved the maximum online accuracy. 

During the testing stage, the predicted label 𝑦   of a specific 

sample was set to argmax(𝑝𝑘 |𝑘 ∈ {0,1,2}), where 𝑝𝑘 is the 

estimated probability corresponding to each category, i.e., Non- 
Pneu (𝑘 = 0), ILD (𝑘 = 1), and COVID-19 (𝑘 = 2). 

Ablation experiments were conducted on a total of 3997 

scans using 5-fold cross-validation as mentioned in Section IV. 

The scans were  randomly  split  into  five  subsets  {𝑺𝑖|𝑖 =  

1,2, … ,5}, which were used to train five independent models 

{𝑴𝑗|𝑗 = 1,2, … ,5} . Each model 𝑴𝑗 was trained using four 

subsets {𝑺𝑖|𝑖 = 1, 2, … , 5 and 𝑖 ≠ 𝑗} and evaluated using the 

rest subset. The performance of each model was assessed in 

terms of accuracy, recall (sensitivity), specificity, precision, F1- 
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TABLE II 

RESULTS OF 5-FOLD CROSS-VALIDATION OF THE FIVE CLASSIFICATION MODELS FOR COMPARISON 

Lesion Type Models Accuracy (%) Recall (%) Specificity (%) Precision (%) F1-value (%) AUC (%) 

 WA-66 86.0  1.6 81.4  7.3 87.0  3.1 58.3  4.0 67.6  2.3 92.6  1.7 
 SA-66 84.0  4.4 83.8  16 84.0  8.2 56.9  10.9 65.4  4.2 92.9  2.2 

Non-Pneu WA-66-M 82.4  5.7 89.9  7.7 80.8  8.5 54.2  14.2 65.8  6.9 93.8  0.7 
 SA-66-M 78.4  2.7 95.1  1.6 74.8  3.1 45.4  3.4 61.4  3.3 93.9  1.5 
 PA-66-M 91.5  1.0 82.3  4.7 93.5  1.6 73.8  4.2 77.6  2.1 95.3  0.8 
 WA-66 71.1  7.8 49.1  15.1 97.7  1.3 96.5  1.0 63.6  14.0 91.2  2.9 
 SA-66 75.5  7.0 59.0  14.1 95.3  1.7 94.0  0.9 71.4  11.0 90.7  2.0 

ILD WA-66-M 78.6  3.8 64.7  8.3 95.3 3.3 94.6  3.0 76.4  5.8 92.2  1.9 
 SA-66-M 75.3  4.6 57.0  9.3 97.4  1.4 96.6  1.6 71.2  7.4 93.2  1.7 
 PA-66-M 89.4  1.2 88.5  1.5 90.6  2.6 91.9  1.9 90.2  1.1 95.7  1.2 
 WA-66 76.9  8.1 93.4  3.4 70.7  12.2 56.6  10.0 69.8  6.8 92.1  1.9 
 SA-66 81.0  10.9 83.7  9.2 80.0  18.0 67.4  15.5 72.5  8.4 92.2  1.7 

COVID-19 WA-66-M 85.7  8.2 79.7  11.1 87.9  14.3 77.8  15.8 76.6  7.6 92.9  4.3 
 SA-66-M 87.1  3.5 81.1  2.1 89.4  4.9 75.4  8.8 77.8  4.7 92.9  1.8 
 PA-66-M 93.3  0.8 87.6  4.3 95.5  2.1 88.4  4.1 87.8  1.5 97.3  1.1 

The highest score in each column of each lesion type is shown in bold. 

 

value, and AUC. Then, the overall performance of the proposed 

method was assessed by calculating the mean and standard 

deviation of cross-validation metrics. 

To further analyze the proposed method and make 

comparisons with existing methods, models were also trained 

using the above-mentioned 3997 scans and evaluated using the 

testing dataset containing a total of 600 scans. Confusion 

matrices were used for quantitative analysis. 
 

VI. RESULTS 

The results of 5-fold cross-validation are tabulated in Table 

II. By observing the results, two main conclusions can be drawn: 

(1) For classification of all three target categories, all the PA- 

66-M, the WA-66-M, and the SA-66-M models achieve higher 

AUC compared to the WA-66 model and the SA-66 model. 

This phenomenon demonstrates that the multi-task learning 

strategy can suppress the inter-class interference issue by 

splitting the three-category classification task into two binary 

classification tasks, and thus the performance is improved. (2) 

For pneumonia-type classification (i.e., ILD or COVID-19), the 

SA-66-M model outperforms the WA-66-M model. However, 

the improvement is very minor. In contrast, the proposed PA- 

66-M model improves the performance by a large margin. The 

AUC value corresponding to the ILD and the COVID-19 

achieved by the PA-66-M model are 95.7% and 97.3%, 

respectively, which are much higher than 93.2% and 92.8% 

achieved by the SA-66-M model. This phenomenon 

demonstrates that the proposed prior-attention mechanism, 

compared to the self-attention, can further improve the 

performance. 

The above analysis reveals that, compared to just designing 

deeper models, developing novel techniques such as attention 

mechanisms and multi-task learning strategies also improve 

classification performance, especially under scenarios where 

large-scale dataset is hard to collect. As listed in Table I, both 

the WA-66 and the SA-66 models (containing 19 corresponding 

residual blocks) are much deeper than the other three models 

that contain only 8 corresponding residual blocks but have 

 

 

 

 

 

 
Fig. 5. Training loss curves of the pneumonia-type classification 

branch corresponding to the three models (i.e., WA-66-M, SA-66-M, 
and PA-66-M) trained using the multi-task learning strategy. It can 
be observed that the convergence speed of the proposed PA-66-M 
model is much faster than that of other models. 

 
wider network architectures (i.e., the WA-66-M, the SA-66-M, 

and the PA-66-M models). However, the performances of the 

WA-66 and the SA-66 models are inferior to that of the other 

three models. 

To further validate the proposed method, we trained 

additional WA-66-M, SA-66-M, and PA-66-M models using all 

the 3997 scans. The main difference between the WA-66-M, 

the SA-66-M, and the PA-66-M models is the attention 

mechanism that was used in the pneumonia-type classification 

branch. To demonstrate the effectiveness of the attention 

mechanisms, Fig. 5 shows the training loss curves of the 

pneumonia-type classification branch (i.e., 𝐿𝑐𝑙𝑠) corresponding 

to each model. Evidently, the variation tendencies of curves 

corresponding to the WA-66-M and the SA-66-M model are 

very close to each other. But minor differences can still be 

observed: the SA-66-M model converges faster than the WA- 

66-M, especially after 100 epoch iterations. In contrast, the PA- 

66-M converges much faster than both the other models, 

especially during the stage of the first 100 epochs. 
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Fig. 6. Confusion matrices corresponding to the WA-66-M, the SA-66-M, and the PA-66-M models. The accuracy demonstrate that the PA-66- 
M achieves much higher performance than that of both the other two models. 

 

phenomenon mainly stems from the fact that the proposed 

prior-attention mechanism can learn lesion-attention 

information more efficiently than the self-attention mechanism. 

We evaluated these models using the offline-testing dataset 

containing 600 scans (200 scans for each category) and used 

confusion matrices for quantitative analysis. The matrices are 

shown in Fig. 6. Each row in a confusion matrix represents an 

actual ground truth class, while each column represents a 

predicted class. A better classifier which can predict more 

correct samples would have larger values on the diagonal of its 

confusion matrix (highlighted as red in Fig. 6). 

By observing the confusion matrices in Fig. 6, the superiority 

of the proposed PA-66-M model is evident compared to the 

WA-66-M and the SA-66-M models. The superiority mainly 

TABLE III 
STATE-OF-THE-ART STUDIES ON THE COVID-19 SCREENING TASK 

Literature Material Partition (case) Task Method Result 

 
Chen et al. [38] 

Total 106 

Not clearly mentioned 

Classification: 

1. COVID19 

2. others (viral, bacterial Pneu.) 

 
2D-UNet++ 

95.2% (Accuracy) 

100% (Sensitivity) 

93.6% (Specificity) 

 
Zheng et al. [39] 

499 for training 

132 for validation 

Classification: 

1.COVID-19 

2.others (viral, bacterial Pneu.) 

2D-U-Net 

2D-CNN 

90.7% (Sensitivity) 

91.1% (Specificity) 

 
Jin et al. [40] 

312 for training 

104 for validation 

1255 for testing 

Classification: 
1.COVID-19 

2.others (viral, bacterial Pneu.) 

 
2D-CNN 

94.1% (Sensitivity) 
95.5% (Specificity) 

 
Jin et al. [41] 

1136 for training 

282 for validation 

Classification: 
1.COVID-19 

2.others (viral, bacterial Pneu.) 

2D-UNet++ 

2D-CNN 

97.4% (Sensitivity) 

92.2% (Specificity) 

 
Wang et al. [42] 

Total 250 
Not clearly mentioned 

Classification: 
1.COVID-19 

2.Viral Pneu. 

 
2D-CNN 

 
82.9% (Accuracy) 

 
Song et al. [43] 

164 for training 

27 for validation 
83 for testing 

Classification: 
1.COVID-19 

2. Bacterial Pneu. 
3. Normal 

 
2D-ResNet-50 

 
86.0% (Accuracy) 

 
Li et al.[44] 

 

3920 for training 

436 for testing 

Classification: 

1.COVID-19 

2.CAP (viral, bacterial Pneu.) 

3.Normal 

 
2D-ResNet-50 

 

90.0% (Sensitivity) 

96.0% (Specificity) 

 
Xu et al.[45] 

 

528 for training 
90 for testing 

Classification: 
1.COVID-19 

2.Influenza-A. 
3.Normal 

 
2D-CNN 

 
86.7% (Accuracy) 

 
Shi et al.[46] 

Total 2685 

5-fold cross validation 

Classification: 
1.COVID-19 

2.CAP (viral, bacterial Pneu.) 

 
Random Forest 

87.9% (Accuracy) 

90.7% (Sensitivity) 
83.3% (Specificity) 

 
Proposed 

3997 for 5-fold cross 
validation 

60 for validation 
600 for testing 

Classification: 
1.COVID-19 

2.ILD (only viral Pneu.) 
3.Normal 

3D-ResNets 
(with prior- 

attention) 

93.3% (Accuracy) 

87.6% (Sensitivity) 
95.5% (Specificity) 
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Fig. 7. Two clinical example patients infected with COVID-19 and ILD, respectively. To demonstrate the effectiveness of the proposed method, 

heatmaps are created from feature maps of each deep model and imposed to the original image. By comparing the heatmaps of (b), (c), and (d), it 
can be observed that the proposed PA-66-M model can highlight the lesion regions more accurately than both the WA-66-M and the SA-66-M 
models (see the regions indicated with the red dashed rectangles). 

 

reflects in the classification of the ILD and COVID-19 

categories. The PA-66-M model achieves 191 and 176 correct 

predictions out of 200 ILD and 200 COVID-19, respectively, 

which is higher than 125 and 169 achieved by the WA-66-M 

model, and 122 and 167 achieved by the SA-66-M model. This 

phenomenon further demonstrates that the proposed prior- 

attention mechanism can significantly enhance pneumonia-type 

classification performance. However, all models have 

misclassifications between the Non-Pneu and the pneumonia 

categories. By analyzing the original images of these 

misclassified cases, we found that most cases with pneumonia 

looked similar to the normal scans, as the pneumonia lesions in 

these cases were not severe. It was difficult to differentiate 

scans with light pneumonia lesions from normal scans. 

We also reviewed relevant state-of-the-art studies on the CT- 

based COVID-19 screening task, as listed in Table III. Most 

existing studies focused on developing methods for identifying 

COVID-19 from other types of pneumonia, including non-viral 

pneumonia. The studies of  and are closer to our work in 

distinguishing COVID-19 from other viral pneumonia. 

However, the main drawback of their works was that too few 

metrics were measured, which is insufficient to accurately 

reflect the overall performance of the classification. 

 

VII. DISCUSSION 

Classification techniques are more feasible alternatives than 

object detection and segmentation-based methods for 

developing COVID-19 screening CADs in a relatively short 

time. This is because training classification models require only 

image-level ground truth labels. Therefore, analogous to most 

previous works, we also adopted classification techniques to 

implement our CT-based COVID-19 screening task. 

Compared to prior works, our method can achieve superior 

performance. We attribute the success to two main aspects: (1) 

We collected more clinical cases from multiple hospitals to 

train our models. (2) We developed a prior-attention residual 

learning strategy for training models. In the proposed method, 

two 3D-ResNet based sub-networks were integrated into a 

single model for both pneumonia detection and lesion type 

classification. Since the detection network was trained as a 

binary classifier using normal images and pneumonia-infected 

images, it can highlight lesion regions more accurately than 

models trained using just pneumonia-infected images. Hence, 

prior-attention information generated by the detection model 

can more effectively guide the lesion-type classification than 

self-attention information generated by the type classification 

model itself. 

Fig. 7 shows two clinical cases that are infected with 

COVID-19 and ILD, respectively. To illustrate the 

effectiveness of the proposed prior-attention strategy, we 

created a heatmap from the convolutional feature maps of the 

type-classification sub-network corresponding to a specific 

model (i.e., the WA-66-M model, the SA-66-M model, or the 

PA-66-M model) using a visualization method and applied the 

heatmap to the original input image. By comparing the 

heatmaps as shown in Fig. 7 (b), (c), and (d), it can be observed 

that the proposed PA-66-M model can highlight the lesion 

regions more accurately than both the WA-66-M model and the 

SA-66-M model, and the heatmap of PA-66-M has larger red 

areas (high attention) inside the main lesion regions as indicated 

with the red dashed rectangles. 

Moreover, to obtain the final three-category classification 

results, the two sub-networks were fused using a learnable 

fully-connected layer (refereed as to late-fusion strategy), rather 

than using voting strategies that were commonly adopted in 

ensemble learning methods (refereed as to committee-fusion 

strategy).   

However, the proposed classification model currently may 
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fail to screen out scans with COVID-19 lesions at an early stage 

and misclassify normal scans to pneumonia category. The 

lesions in these non-severe scans normally appear as relatively 

small ground-glass nodules (GGN) that are very difficult to 

identify from the whole volumetric lung images. To alleviate 

this issue, pulmonary nodule detection can be adopted as a 

compensation method. Besides, knowledge about the location 

information of pulmonary lesions in lung lobe regions (i.e. 

which lobe the lesions are located at) is useful in clinical 

practice, e.g. guiding diagnosis or surgery . However, 

currently, lobe information obtained using the 3D-UNet is only 

used to segment lung regions as a pre-processing step for 

pneumonia detection. In the future, we will try to fully use the 

lobe segmentation result to determine the lobe location of 

predicted pneumonia lesions. 

The weighting factor was implemented as a learnable 

parameter that can be used to adaptively adjust the contribution 

of the attention feature map, avoiding the interference by a bad 

attention feature map obtained at the early stage of model 

training. Actually, the proposed prior-attention mechanism can 

effectively avoid this issue even with a constant weighting 

factor, which has been demonstrated in Fig. 5: the PA-66-M 

model converges much faster than the SA-66-M model, 

especially at the early stage of model training. Definitely, in the 

future, the performance may be further improved if the 

weighting factor is also implemented as a learnable parameter 

in the proposed prior-attention strategy. 

Finally, it is worth noting that the proposed prior-attention 

residual learning strategy can also be applied to other medical 

image classification tasks. For example, in a pulmonary nodule 

detection system, the detection sub-network can be trained 

using positive nodule samples and negative background images 

that are randomly cropped from normal lung regions for false 

positive reduction. Also, it can be used to strengthen the 

classification sub-network that is trained for a specific task 

such as malignancy prediction of detected pulmonary nodules. 

 

VIII. CONCLUSION 

In this paper, we presented a novel multi-task prior-attention 

learning strategy to implement COVID-19 screening in 

volumetric chest CT images. Specifically, we integrated two 

ResNet-based branches into one model framework for end-to- 

end training by designing a prior-attention residual learning 

(PARL) block. Inside these blocks, hierarchical attention 

information from lesion region detection branch was transferred 

to COVID-19 classification branch for learning more 

discriminative representations. Compared to other methods 

with self-attention and without attention, our method located 

lesion regions more correctly so that the extra supervision 

information is more effective to enhance the performance of 

COVID-19 classification tasks. Experimental results 

demonstrated that our method surpassed other state-of-the-art 

COVID-19 screening methods. In the near future, more efforts 

will be devoted to exploring how to identify COVID-19 in the 

early stages and how this prior-attention mechanism can be 

applied in other medical image analysis problems. 
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